FUTURE DISTRICT HEATING SETUP IN VIBORG WITH 95 % RENEWABLE ENERGY

Tom Diget
COO at Viborg District Heating

THE WORLD IS CHANGING

FUTURE ENERGY SOURCES

Apples new Data Facility

- Situated 10 km outside Viborg
- 55 MW surplus energy at 30 degree is planed to be used in Viborg District heating.
- Electrical heat pumps to boost temperature at apple to 50 °C, and another boost placed by the current naturalgas boilers 4 places in town to 55° C and 60 °C
- Alternatively Large "Air to Water" Heatpump
 - 55 MW electrical heat pumps to boost temperature to 50 °C at the current CHP plant, and another boost placed by the current naturalgas boilers 4 places in town to 55° C and 60 °C
 - Lower investment cost, and investment close to city
 - Less efficient because of the lower temperature in outside temperature
- Other surplus energy sources
 - Hospital, supermarket, industrial process
- Existing Gasboilers

4. Generation District Heating

PRODUCTION

Figure 4-8 Duration curve 55 MW from Apple

TEMPERATURE NEEDS

 DTU –repport on friengs and fluiddings temperature needs in typical danish houses 66 64 62 60 Supply temperature [° 1900-1930 1931-1950 46 44 42 40 0% 20% 70% 10% 30% 40% 50% 60% 80% % of year

TEMPERATURE NEEDS

- Older larger buildings
 - Circulation systems on the hot water
 - According to age a heat demand for the radiator from 60 to 75 °C when ist -12 °C outside
- Small buildings
 - Heat exchanger on hot water and no circulation

SECTIONING THE CITY

Green areas optimized for smal buildings (50 °C minimum)

Blue areas optimized for large older buildings (58-60 °C minimum)

FREMLØBSTEMPERATUR AB CENTRAL

Blå areas is optimezed for older multifamily houses (58-60 °C min)

Grønne areas is optimezed for 1-family houses (50 °C min)

HEAT PUMPS IN 2 PLACES

Heat pumps both at the Datacenter and at the gasboilers in Viborg

- Reduces installations outside Viborg
- Makes it possible to use other surplus sources in Viborg
- Can differentiate the temperature in different sections

INVESTMENT IN DISTRIBUTION GRID

- To be able to section the distribution net, a few changes is needed:
 - 4 km distribution net needs to be upgraded
 - 2 new pump stations needs to be established

- Investments14 mio. kr.
- Pipes from 1980-95
- Annual renovation budget in pipes 8 mio. kr.

CONSUMER

- Most focus on consumers in the green zones
 - 5990 customers needs a rental unit
 - 90 customers is larger buildings with circulation systems
 - Danish Clean Water model to treat legionella by adding chlorine from kitchen salt seems to be the most effective way.
 - A Heat pump Is another solution

INVESTMENT AND PRODUCTIONPRICES

Scenario	Temperature	Mio. kr.
Reference – Natural Gas CHP	80/40 °C	29
0 – Heatpump at Apple – Natural gas boost to transmissions temperature	80/40 °C	275
1.A – Heatpump at Apple	60/30 °C	318
2.D – Heatpump at Apple and at gasboilers	55/30 °C	371
3.D – Air to Water Heatpump	55/30 °C	208

Produktion prices	Ref.	Sc. 0	Sc. 1A	Sc. 2D	Sc. 3D
[kr./MWh]	642	307	274	243	298

- Production price is reduced by 64 Kr./MWh in average compared to running the transmission-network as usually
- Incl. payback of Investments, it generates (over 25 years) savings of 480 mio. kr.

CUSTOMER PRICES

A standard home 18,1 MWh 130 m²

Produktion prices	Ref.	Sc. 0	Sc. 1A	Sc. 2D	Sc. 3D
[kr./year]	18925	11316	10603	9952	11201

• A customer saves 1.364 kr a year or 180 € a year if we do it smart

TIMING AND TAXES

