Master Planning for Resiliency and Sustainability through Net Zero Modeling – NZP Tool ™

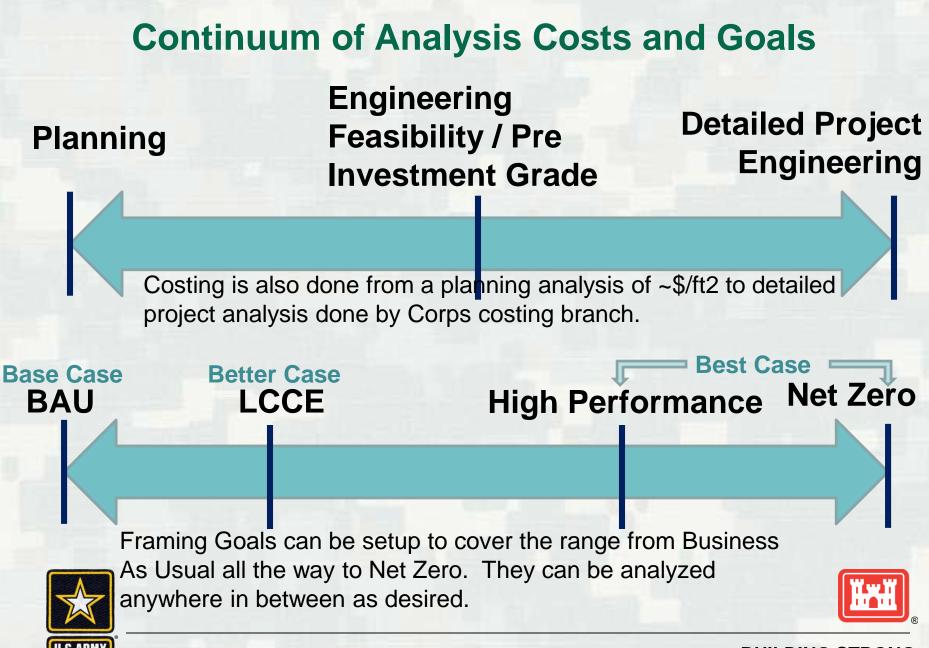
Dr. Richard Liesen USACE ERDC-CERL

US Army Corps of Engineers BUILDING STRONG®

Distribution Statement A - Approved for public release; distribution is unlimited.

Definitions

- Framing Goal A target goal for analysis. Not a commitment or decision.
- Baseline A snapshot of the current energy use situation. The baseline is one reference point used to evaluate alternative futures.
- Future Base Case The baseline extended to include already-funded renovation as well as planned construction and demolition activities. The base case is a future reference point for "business as usual."
- Alternative(s) A set of energy measures to be compared against the base case
 - Better, Best, Others
- Site Energy Energy measured at the point of use.
- Source Energy Energy measured at the point it is generated (takes into account conversion and transmission losses).
- District/Cluster a group of buildings to be served by a microgrid/ heating/ cooling loop (or some combination of these)


The NZP Tool: Installation Sustainability and Resiliency Planner

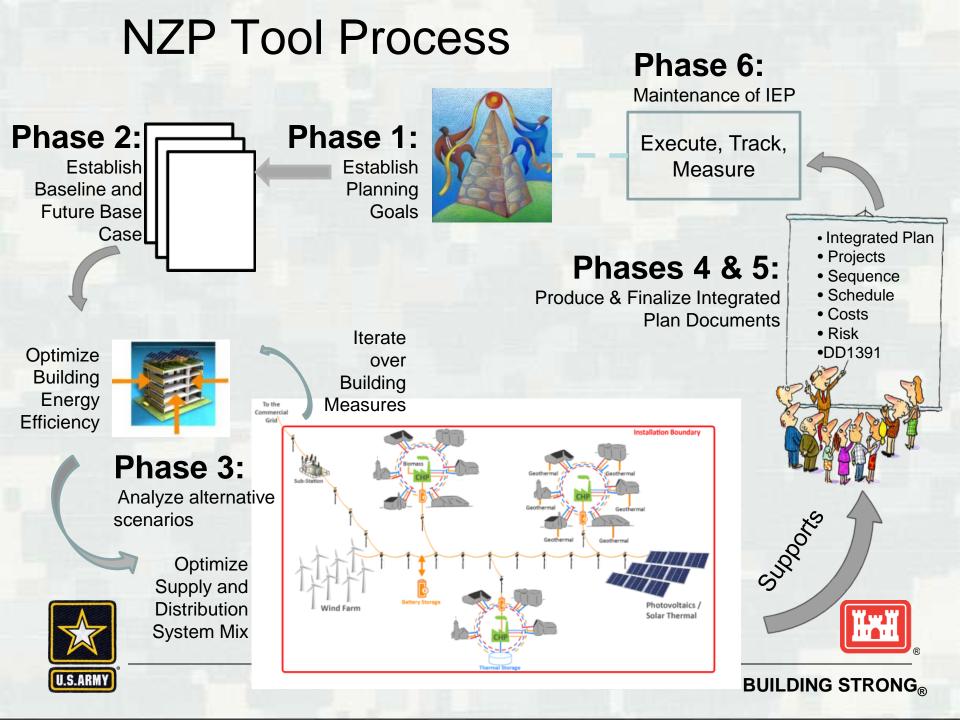
- Web based tool that assists in energy, water, and waste (EW2) planning
- Easy to use after setup
- Projects EW2 usage, flows
- Provides ROI analysis for EW2 conservation measures
- Integrates with Master Planning Process
- Identifies a roadmap and projects
- Integrated Solid Waste and Water
- Integrated into Corps of Engineers sustainability planning process

udy ist	Study Information	Building Optimization	Installation or Subsection	Decision Analysis	Generate Planning Forms		Developmental	l Use
	e, Edit, or de Archived?	View Studies						
			c		re to Create w Study			
i i							Page 1	of 9
9	5	Portsmouth Naval Portsmouth Naval resting all facility Details	Shipyard		l, and demolished combin	ations for both default and	Q View Copy Upgra Delete	
	5	Portsmouth Naval Portsmouth Naval Running the PNSY Details Archived?	Shipyard	em for ESTC	P Project (Richard L)		Q View Dopy Upgra	
	-	West Point USMA (West Point Military Running USMA three Details	Academy	roject (Richa	and L)		Copy	de
ath CI	ister Cluster	Facilities Map						-

OSD Installation Energy Plans Memo, 31 March 2016

 OSD memo requiring all services to report in one year each agencies' plan to implementing an energy plan tied to the master plan by 2018.

Schofield Barracks, HI



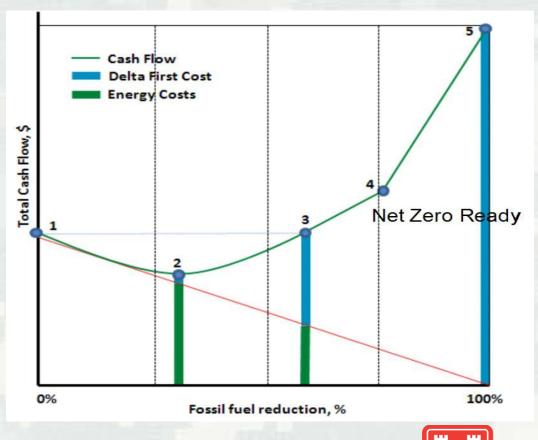
BUILDING STRONG®

OSD Installation Energy Plans Memo, 31 March 2016

- Phase 1: Identify the team, tasks, deliverables, and goals
- Phase 2: Establish baseline and future base case
- Phase 3: Analyze gaps and alternative scenarios
- Phase 4: Develop and sequence projects and activities
- Phase 5: Assemble review and finalize document
- Phase 6: Execution and maintenance of the IEP

Energy and Sustainability Goals (example)

Parameter	2040 Base Case	2040 Target	Comments
Energy Efficiency %	Reference	40%	"Forty by Forty"
Source Energy Use	360,740 MWh	216,444 MWh	Based on Base Case
Site Energy Use	300,400 MWh	Derived	Depends on Scenario
GHG Reduction %	Reference	100%	Net Zero
Scope 1 & 2 Emissions	63,800 mt	Net Zero	
Energy Economics			Gov't Analysis Life Cycle Cost Effective
Internal Rate of Return	NA	5%	Calculated over plan period
Energy Security	Acceptable	No Change	"Security and Efficiency"
Quality, reliability, resilience	NA	No change	Thermal and electric Equal or better than baseline
			e e e e e e e e e e e e e e e e e e e


8 UNCLASSIFIED - FOUO

U.S.ARMY

BUILDING STRONG®

Cost-Optimizing Zero Energy Buildings Integrating EEM's that are Net Zero Ready Cost Effective

- 1. business as usual or the base case
- 2. least life cycle cost option
- 3. achieved the same total annual cost as your base case building, but the building at point 3 is more energy efficient and often more comfortable.
- 4. is the Crossover Point: where generating renewable energy is more cost-effective than additional Energy Efficiency Measures or Net-Zero Ready. Point 4 is normally at 60% to 80% savings depending on building and location

BUILDING STRONG

Building Simulation Process

1. Gather baseline information

2. Simulate baseline and EEM packages

3. Generate Cost/Energy curve and SIR for **EEM** packages

4. Select optimal EEM package for each building type

Initial building analysis complete. Prepare 5. load profiles to pass to next phase for cluster analysis

Description of Alternative Scenarios PNSY (Cold Weather example)

1. Baseline:

Existing buildings and central plant equipment are simulated.

2. Basecase:

buildings with planned construction, renovation, and demolition. Existing central plant equipment provides a "status quo" used as a comparison for the remaining scenarios.

3. District Steam:

buildings with a modern steam system. One existing natural gas turbine is replaced with two natural gas reciprocating engines with approximately half the electrical output capacity each.

4. District hot water and spot steam (District Hot Water):

 buildings with a modern hot water system and spot steam generation to meet process loads. Central plant same as District Steam scenario.

5. Decentralized:

 buildings with decentralized boilers/furnaces and spot steam generation to meet process load. The same level of electrical backup is still required (15.4 MW for the installation, as in the existing central plant).

6. Net-Zero Fossil Fuel (Net-Zero FF):

buildings with a modern hot water system and lowest equivalent annual cost equipment to meet net zero fossil fuel goals. Only analyzed using the NZP tool.

Description of Alternatives JBPHH (Warm Weather Example)

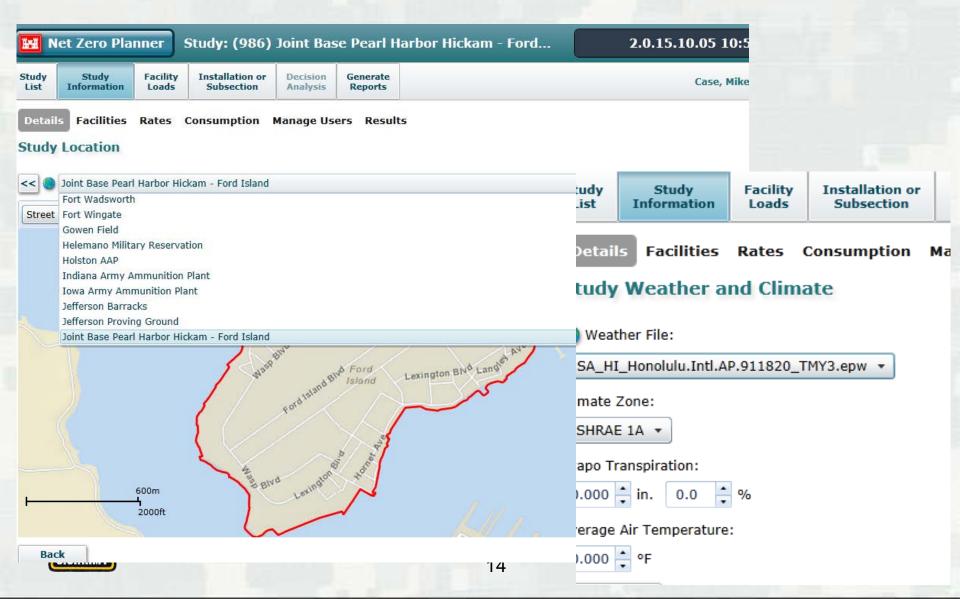
- 1. Baseline:
 - Existing buildings are simulated. No heating.
- 2. Basecase:
 - buildings with planned construction, renovation, and demolition. No existing central plant or cooling systems
- 3. Better Case:
 - Minor EEM improvements to buildings
- 4. Best Case:
 - Aggressive EEM improvements to buildings.
- 5. Best Case w/ 50% renewables:
 - Meet half of best case electrical loads with non-fossil fuel source
- 6. Best Case net zero
 - buildings with a modern hot water system and lowest equivalent annual cost equipment to meet net zero fossil fuel goals. Only analyzed using the NZP tool.

BUILDING STRONG®

Study Setup and Information

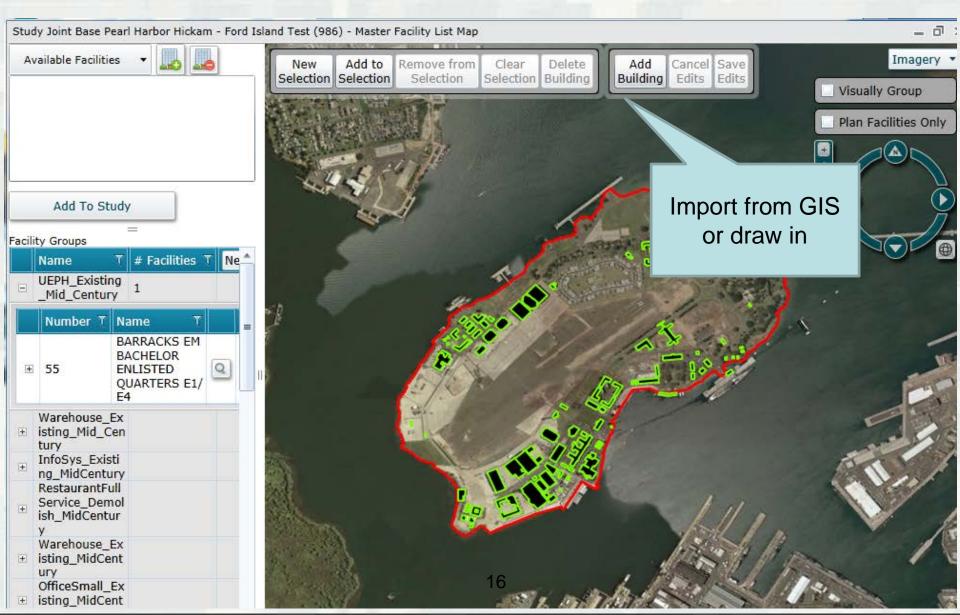
ly 🛛	Study Facility	Installation or Dec	sion Generate	
	formation Loads		lysis Reports	Case, Mike
tails	Facilities Rates	Consumption Mana	ge Users Results	
dy In	formation Detai	ls		
4.7.6				
idy Info	rmation Alternative	5		Edit All
				View All
			lickam - Ford Island Test (986)	Edit
	Param Version: 0 NZI Opt Version:	0.9.0		View
-	Created By: Gart Modified By: Cas			
	Last Edited: 10/2 Description: N/A	27/2015 10:44 AM		
	Baseline Year: 20 Study Duration:			
	Public Access			
2	Location and M	eteorological Data		Edit
	Upload PV	Dead Useban Uklass	Ford John d	View
T	Weather File: US	ase Pearl Harbor Hickam A_HI_Honolulu.Intl.AP.91		
	Climate Zone: AS Soil Type: 🍂	SHRAE IA		
	ET: 0 in. (0%) Average Tempera	ature: 0 °F		
		newable energy by 2020		Edit
	Reduce Energy	Use Intensity by 50%		View
	3			
	This Study Incl	udes:		
_	Energy	》 五		
	Water			
	Stormwater			

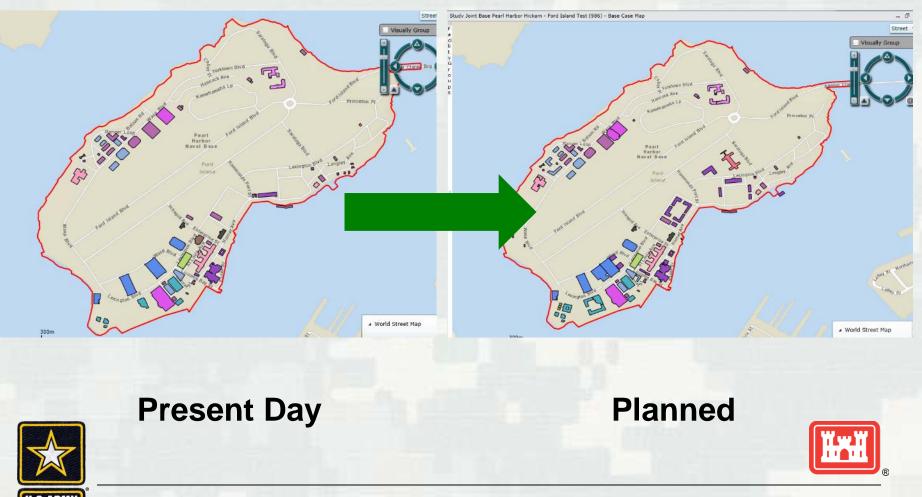
Progress


JEEMs

Progress

Baseline


Many DoD Installations in system, with weather


Adding Facilities is Easy

H ri		86) Joint Base Pe		oor Hicka	m - Ford	2	.0.15.10.05	10:57
	t Information Loads Coloration Itails Facilities Rates Cor M Idy Inventory Faciliti and	ap Viewers building lists	sults	E	Baseli Basecase alternat	e, and	Case	, Mike(
Ģ	View Map						Master Facility L	ist 🔹
	· map						Master Facility L	ist
Fa	cility Group Summary Facilities Summar	У					Baseline	
Dra	ag a column header and 'rop it here to group by tha	t column					Base Case	
	Name T	Facility Type	Status T	Facilities T	Plan Area T (%)	Cond. Area (ft^2)	Better Case Best Case	
+	CDC_20151007_10:44	CDC	Planned	1	1.61	42,240	100	
+	GIB_20151007_10:44	GIB	Planned	3	9.83	258,000	100	
+	GIB_20151007_10:44		Existing	1	1.3	33,992	100	
+	GIB_20151007_10:44	Duilding	ing	1	1.83	48,000	100	
+	GIB_20151007_10:44	Building	ing	1	0.38	9,980	100	
+	GIB_20151007_10:44	types	ing	3	0.52	13,769	100	
+	HotelLarge_20151007_10:44	Hotel-Large	Existing	1	2.22	58,354	100	
+	HotelLarge_20151007_10:44	Hotel-Large	Existing	1	2.27	59,439	100	
+	HotelLarge_20151007_10:44	Hotel-Large	Planned	1	1.62	42,600	100	
+	InfoSys_20151007_10:44	InfoSys	Planned	3	0.23	6,000	100	=
+	InfoSys_Existing_MidCentury	InfoSys	Existing	1	2.05	53,724	100	
+	OfficeLarge_20151007_10:44	Office-Large	Existing	2	9.81	257,435	212.5	
+	OfficeLarge_20151007_10:44	Office-Large	Planned	1	2.86	75,047	250	
+	OfficeMedium_20151007_10:44	Office-Medium	Existing	1	0.58	15,216	100	
+	OfficeMedium_20151007_10:44	Office-Medium	Planed	3	5.02	131,600	100	

Uses Available GIS information

Compare "as-is" to future scenarios

BUILDING STRONG®

Energy Efficiency Measures (EEM)

- Often called Energy Conservation Measures (ECM)
- Applied to a facility to decrease energy use
- Can be applied as Packages or Bundles
 - Cherry-picking
 - Energy Service Company (ESCOs)
- Must be analyzed as a system
- Implementation costs
 - Many measures not cost effective on their own
 - Deep retrofit
- Opportunity for benchmarking

Energy Strategies

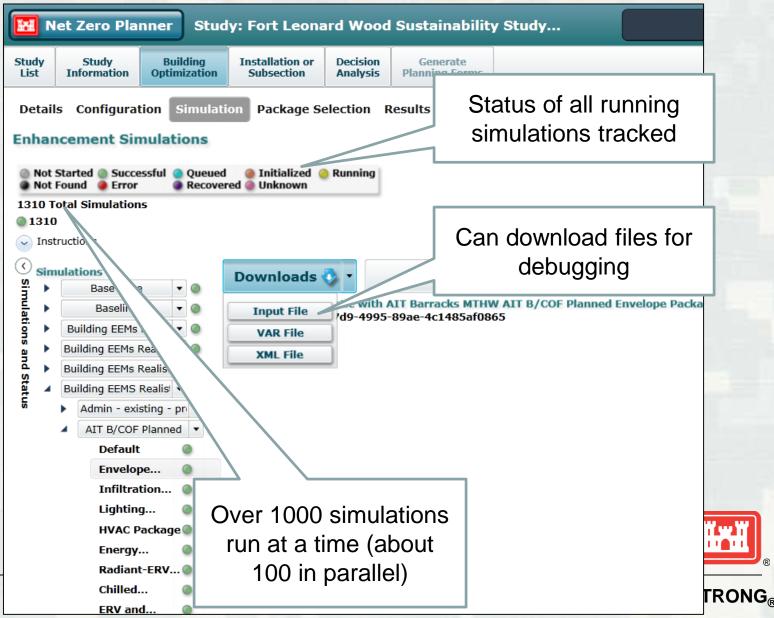
Reduction (EEMs)

- Insulation & Infiltration
- Lighting & Daylighting
- Lighting
- High-Efficiency Equip
- High-Efficiency HVAC
- Energy Recovery
- Dedicated Outside Air Systems
- Cool Roofs
- Metering
- Building Automation

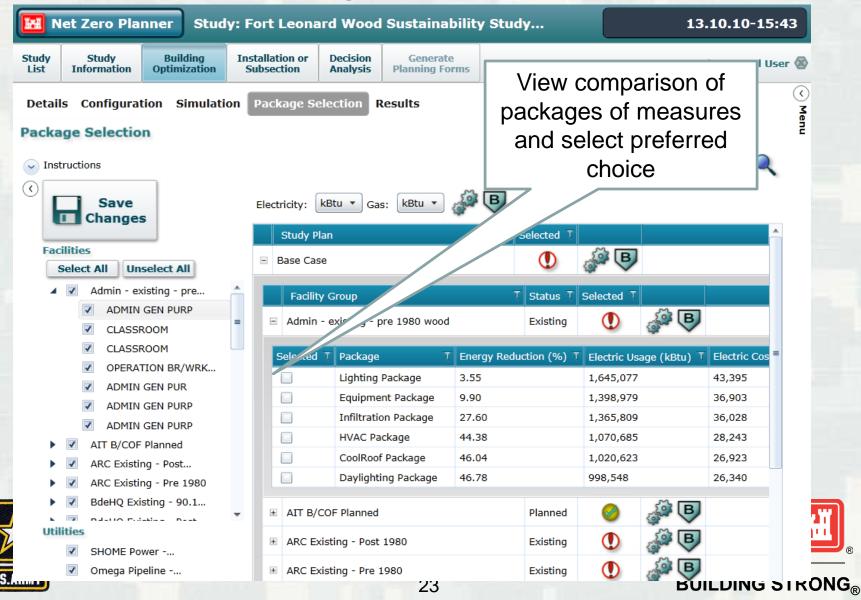
- Supply & distribution
 - Renewable energy PV
 - Cogeneration/CHP
 - Large and Small-Scale District Energy
 - Thermal Storage
 - Biomass
 - ► Wind

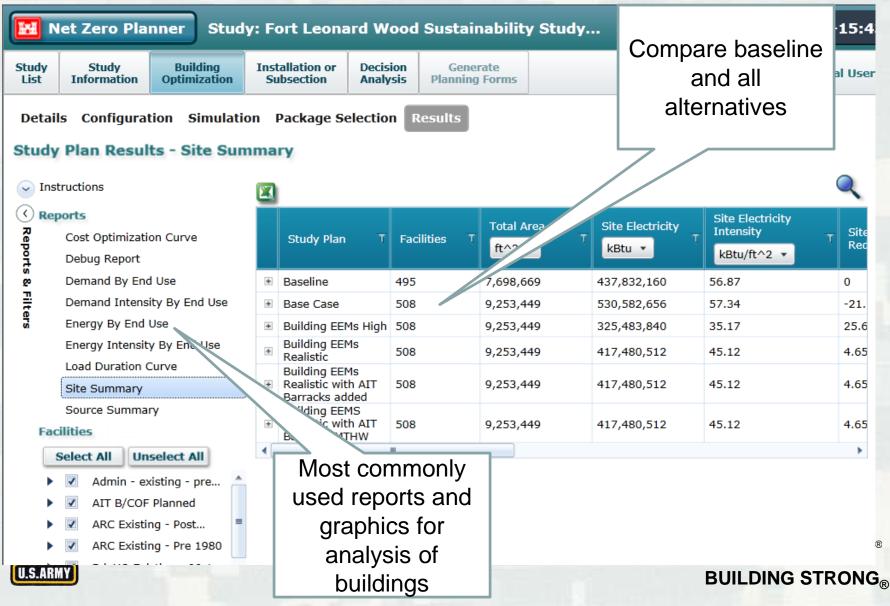
Rates and Consumption

	let Zero Pla	nner Stu	dy: Fort Leona	ard Wood	Sustaina				
		June Sta			Sustama	🔛 Net	Zero Pla	nner S	Study: Fort Leona
Study List	Study Information	Building Optimization	Installation or Subsection	Decision Analysis	Generat Planning Fo	Study List I	Study information	Buildin Optimizat	
Detai	ls Facilities	Rates Cons	sumption Demo	ographics	Manage Us		Facilities		Consumption Demo
Study	Consumpt	ions				Tags:	8	nsumptio	on Details
	s Defined @E	nergy 🔘 Water	🕘 Waste			Correspon Utility: Descriptior	SHOR	E Power - ch E power	ecked w/ Allen 1/18/13 (
4.5.1		n				Year: Building Ar Unit:	2011 rea: 11,14 MWh	■ FY 7,000 + ft	
Energ	y Water Was	ite				Month T	Amount T	Cost (\$) ₹	
Drag a	column header an	o op it here to gr	oup by that column			November		1291931	
F	uel Type 🛛 🍸 🛛	Descri				December	17248.41	1373902	
	ectricity S	SHOME pol				January	16045.35	1350330	
\sim	aectricity 3	SHOPE DO				February	14614.28	1294193	
	latural Gas	Omega G <u>as</u>				March	15705.39	1359349	
-						April May	15671.39 17321.38	1258454 1385532	
🔊 Р	ropane o	^{wc} Ta	bs for Energ	v Wate	r 🖌	June	24916.91	1917775	
			•	•		July	25787.03	2165092	
Ba	ck		and Waste	•		August	23897.02	2038930	
			complete	ed		September	r 18268.29	1667248	
U.S.AKMY	J		•			Back			


Configuration of measures

	Study List Detail: Base (Packa \checkmark Inst	Case Alterna	Building Optimization tion Simulat ative Enhan Custom Space ase Building E	Installatic Subsect ion Packa cement es Defined EMs High Bas		enerate ing Forms	udy	cc de	onfigures efines int	amically GUI and erface to on JOB
	ment En	hancements		Bas	e Case Admin - sting	pre 1980 wood	Hiah-Effici	ency Ele	ctric Lighting Retr	
	ø	Admin - existi		<u> </u>		-				
	Cost	 Lighting P 	-		Name	T Default Value		Unit T		
5	-		fficiency	<u>}</u>	lamp_type	T8	Т8		Electric lighting lam	
		 Equipment 	fficiency	<u> </u>	lighting_density_mechanic	0.8	0.4		Electric lighting pov	
		▲ Infiltration		<u>م</u> ا	lighting_density_office	0.8	0.8	w/it^2	Electric lighting pov	
			ed Infiltration	=						
·		 HVAC Pack 	_	1 •						
			fficiency Chille							
;		-	fficiency Boiler							
		- High-E	fficiency							
		Supply	/ Temperature							
		CoolRoof I	Package 📔	î •						T. St. T
		Cool R	oof							
		 Daylightin 	ng Package	1 •						R
			hting Controls							
	•	AIT B/COF P	lanned 🔻 🔘							


Energy Efficiency Measures


Simulations on server farm

Package Selection

Building Level Reports

Installation-wide Analysis: Clusters

Baseline Base Case Building EEMs High Building EEMs Realistic Building EEMs Realistic with AIT Barracks added Building EEM >

Click Here to Create a New Cluster

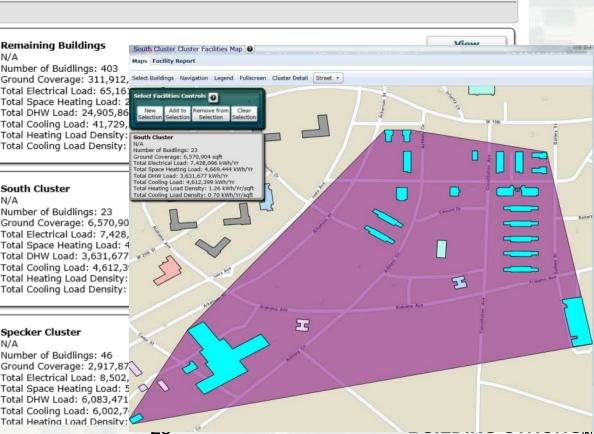
List View Grid View Facility Report Map View

- **>** H H

Search

Remaining Buildings N/A

Number of Buidlings: 403 Total Electrical Load: 65,161 Total Space Heating Load: 2 Total DHW Load: 24,905,86 Total Cooling Load: 41,729, Total Heating Load Density: Total Cooling Load Density:


South Cluster N/A

Number of Buidlings: 23 Ground Coverage: 6,570,90 Total Electrical Load: 7,428, Total Space Heating Load: 4 Total DHW Load: 3,631,677 Total Cooling Load: 4,612,3 Total Heating Load Density: Total Cooling Load Density:

Specker Cluster

N/A Number of Buidlings: 46 Ground Coverage: 2,917,87 Total Electrical Load: 8,502, Total Space Heating Load: 5 Total DHW Load: 6,083,471 Total Cooling Load: 6,002,7 Total Heating Load Density:

Page 1

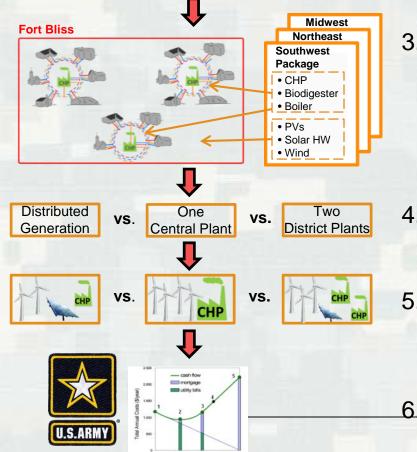
of 1

Choosing Equipment to Include in Optimization

Net Zero Planner Study: Fort Leonard	Wood Sustainabi	lity Study		13.10	.10-15:43
Study List Study Information Building Optimization Installation or Subsection D	ecision Generate nalysis Planning Form	5		Develop	nental User 🔇
Details Cluster Networks Equipment & Measure Building EEMs Realistic with AIT Barracks ac @ Equipment Defined (Input\Output Device) @ Equipment	ided Alternative C	lusters			(
Instructions Baseline Base Case Building EEMs High Building E	EMs Realistic Building	FEMs Realistic with A	IT Barracks ad	ded Buildir	
Input / Output Storage					.g
□ Save		Name	τ Max Num. τ	Max Power	T Input
Clusters		UKC_LOW	10	280	200_
Remaining Buildings	ACBus	ACBus1	5	20000	EtoBı
Specker Cluster Image: Cluster Image: Cluster Image: Cluster 47	HeatE	HeatE1	10	10000	800_
48	CoolLoad	CoolingLoad1	1	9999999	Distri
49	HeatLoadHotwater	HWFedHeatingLoad1	1	9999999	Distri
50	Boilers	DistBoilersSolution	1	999999	Retai
51	Elec_Chill	DistElec_Chills	1	999999	Efron
52	PhotoVolt	PhotoVolt14kW	10	100000	Solar
53	PhotoVolt	PhotoVolt140kW	10	100000	Solar
54	PhotoVolt	PhotoVolt1400kW	10	100000	Solar
		"			

Set Constraints for Optimization

	let Zero Pla	nner Stud	y: Fort Leona	ard Wood Si	ustainability	y Study	1	13.10.10-15:43
Study List	Study Information	Building Optimization	Installation or Subsection	Decision Analysis P	Generate lanning Forms		De	evelopmental User 🗟
	s Cluster I	-	uipment & Meas	sure Constra	ints Optimiz	ation Results		() Menu
_	traints Defined	I						Q
Bas	seline Base Ca	ase Building E	EMs High Buildi	ng EEMs Realist	tic Building EE	Ms Realistic with AIT	Barracks added	Building EEM 🕨
Clusters	Save Change sters Remaining Bui South Clus Specker Clu West Clust	S C C C C C C C C C C C C C C C C C C C	eline Remaining I nergy Security Critical Electric Max nvironmental / R Renewable Target: Max. Carbon Footp asic Economic Va Project Lifetime: Int. Rate: 5.00 edundancy Facto Additional Heating: Additional Cooling:	ximum Load: 0 enewable (Anno 0.00 • % rint: 100,000,0 ilues 0.00 • YY • • % • rs : 1.00 •	.00 • kw • ual) •	• Economic Values		
Bac	:k							Continue


Cluster Optimization

Ŷ					
dy st	Study Information	Building Optimization		nerate ing Forms	Developmental User 🔇
Not s	s Cluster M er Optimiza Started Succe Found Error	tions ssful @ Queued	uipment & Measure Constraints	Optimization Results	(
	al Optimization				
	ructions				٩
Opti	imizations		Downloads 👌 🔹 Re	set 🔕	
4	Base Case Base Case		Loads.dat		
			Irradiance.dat	'0e2d359f5	
	South C		devices.dat	-	
	Spec		StorageDevices.dat	-	
	West Cl	uster 🔻 🍥	1000	-	
•	Baseline	- 0	PotableWaterConsumption.dat	-	
•	Building EEMs		WindTurbinePower1.dat	_	
•	Building EEMs I		EGridEnRate.dat		
•	Building EEMs I		ElectricDemandRatesFile.dat		
•	Building EEMS	Realist 🔻 🔘	Fuels.dat		
			AdditionalConstraints.txt		
			nzi-opt-parse.xml		
			nzi-opt.mod		
			nzi-opt.log		
			nzi-opt-parse.log		

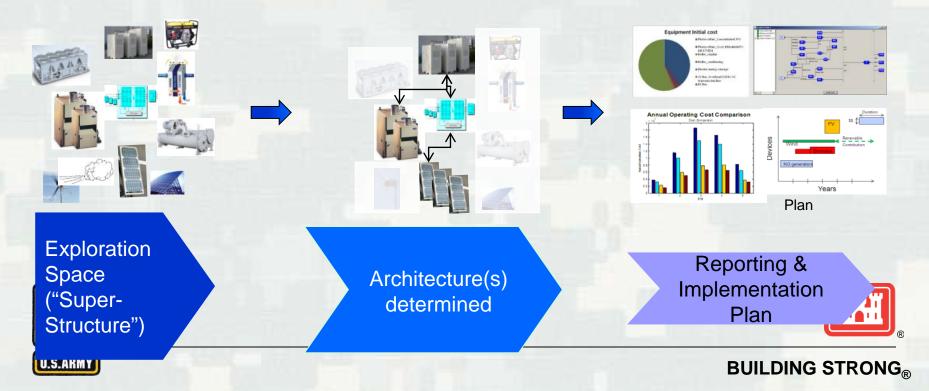
U.S.A

Installation Optimization Process

- 1. Integrate all building energy demands
- 2. Use energy density to identify possible clusters

3. Determine potential cluster equipment packages for installations and region

- 4. Generate alternative equipment configurations, including centralized and decentralized options
- 5. Optimize equipment size and pipe sizes
 Electric, thermal, hydraulic, economic simulations


Calculate SIR_{cluster} & EEMs

BUILDING STRONG

NZI Optimization Tool (NZI-Opt)

NZI-Opt is an optimization tool that is used to find the lowest life cycle-cost equipment suite to meet the "cluster level" demands while meeting a set of defined constraints. Cluster level demands can include heating, cooling, electric, critical electric, water, waste, etc.

How it works

NZI-Opt begins with definitions for all possible equipment pieces that could serve the cluster demands. These definitions include region-independent parameters such as efficiency, energy inputs, and energy outputs. Some equipment examples are shown below.

Electric Chiller

Diesel Generator

Photovoltaic

AC Bus

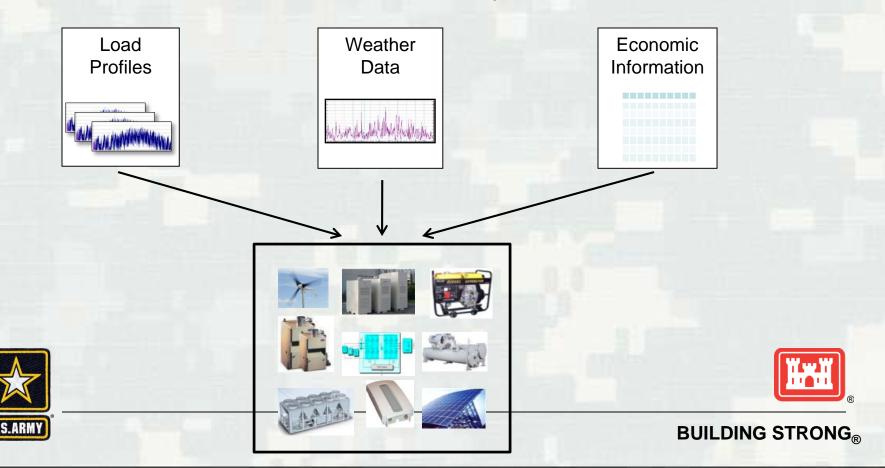
Absorption Chiller

Fuel Cell

Wind Turbine

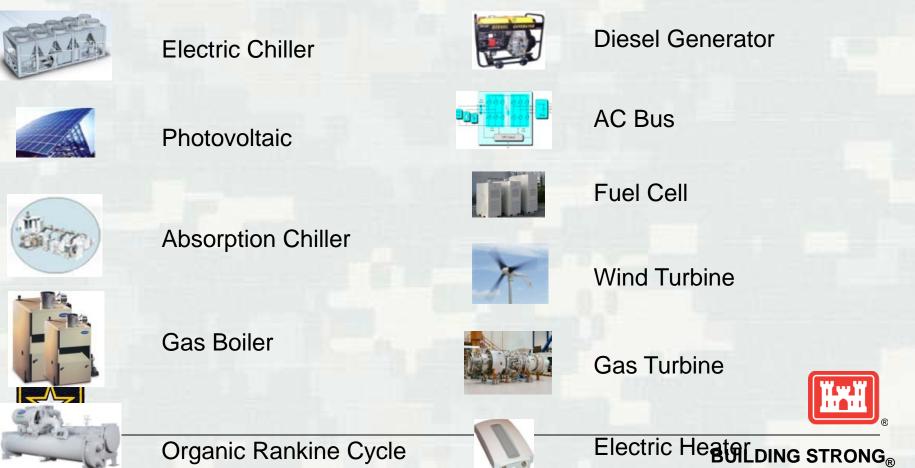
Gas Boiler

Gas Turbine



Electric HeataLDING STRONG®

Organic Rankine Cycle


Installation Specific Inputs

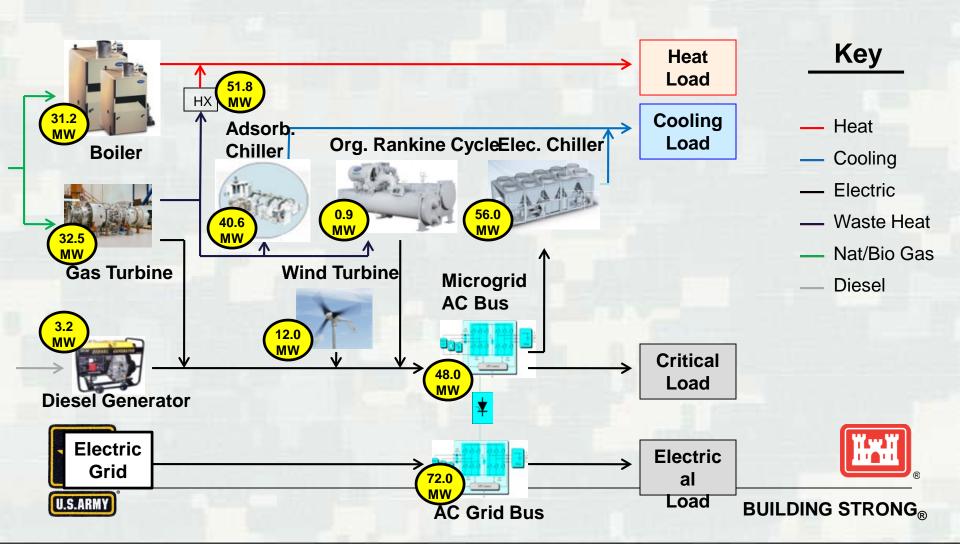
Load profiles are input to provide the demands that must be met by the "supply" equipment. Weather data provides the necessary information for determining the potential of renewable sources. Economic data provides regionally specific information on utility cost schedules, equipment installation and maintenance costs, and fuel prices.

Selecting a Supply Architecture

The optimization process determines the best suite of equipment by ensuring that the demands for heat, cooling, electric, etc are fulfilled at each of the 8760 hours in the year, while satisfying the additional environmental and legislative requirements.

Selecting a Supply Architecture

The optimization process determines the best suite of equipment by ensuring that the demands for heat, cooling, electric, etc are fulfilled at each of the 8760 hours in the year, while satisfying the additional environmental and legislative requirements.



BUILDING STRONG®

Sizing the Supply Equipment

Specific equipment pieces are sized and their interactions with each other are tracked throughout the year. The result is a complete "supply" solution that provides the sizing, initial cost, and operating cost of every piece of equipment in the lowest cost solution.

Cluster Results

	et Zero Pla	nner Stud	y: Fort Leona	rd Wood	Sustainabilit	y Stu	ıdy	13.10.10-	15:43
Study List	Study Information	Building Optimization	Installation or Subsection	Decision Analysis	Generate Planning Forms			Developmenta	al User 🐼
		-	uipment & Meas Comparison	ure Cons	traints Optimiz	ation	Results		() Menu
(Rep	ructions orts Annual Energy (ower: kW			l		٩
י עו	Enerav Overvie		Study Plan		T Natural Gas (kW	/h) T	Peak Natural Gas (kW)	T Electricity (kWh)	₹ Ρ€
t s	🔛 Net Zero Planne		rd Wood Sustainability S	Study	13.10.10-15:43		139,420	140,980,944	34
	Study Study List Information O	Building Installation or Subsection	Decision Generate Analysis Planning Forms		Developmental User	20	128,586	114,134,760	29
			ure Constraints Optimizati	on Reculte	($\overline{\mathbf{C}}$	83,670	97,613,848	25
		- Equipment Overviev				Menu	119,182	113,842,288	28
	Instructions				٩				20
	(Reports	Alternative	T Dev	ices T	· · · ·		117,735	113,228,744	28
	Annual Energy Com	Base Case	20				123,478	113,307,272	27
	Energy Overview	Baseline	20						
		 Building EEMs Hig Building EEMs Re 							
			alistic with AIT Barracks added 116						
		Cluster	T Devices T						
		E Remaining Build							
		South Cluster	17						
		Specker Cluster	21						
			Max Power T Unit Devices T						
		ACBus1	20,000 kW * 1					(
		Air_Elec_Chill_2 Air_Elec_Chill_4	352.00 kW • 1 1,055 kW • 1						11
57		Boil0	100.00 kW • 2						
		Boil2	2,500 kW 🔻 2						®
		ExistingBoilers	6,956 kW 🔻 2			_			
U.S. ARM		ExistingElChillers	3,340 kW 🔻 2		00				
Astrinum	9				36			BUILDING STR	

Decision Support

N	et Zero Plai	nner Stud	y: I	Fort Leonar	d Wood	Sustainabil	lity Study		13.10.10-15:	43			
Study List				Installation or Subsection Analysis Planning Forms			5	Developmental User					
	on Analysis	Results - C	_	tering Repo	rt				Q				
Instructions Reports Annual Energy Comparison Summary Report		Comparison		Scenario +	Invest	ment +	Total Equivalent Annual Cost	+	Total Source Energy				
orts	Summary Repor	t		Ţ		T	(Dollars/Year)	र	MWhs/Year				
Alte	ernatives		+	Baseline	0	22,	22,619,526		497,248				
	Base Case		+	Base Case	261,232	,464 28,	404,150		600,465				
	Baseline		+	Building EEMs High	282,582	,176 22,	024,720		404,372				
	 Building EEM Building EEM 	-	٠	Building EEMs Realistic	264,259	,856 25,	324,252		495,929				
	_	Ms Realistic	÷	Building EEMs Realistic with AIT Barracks added	259,427	,952 24,	24,283,958		493,831				
L	Jpdate		÷	Building EEMS Realistic with AIT Barracks MTHW	262,438	,288 23,	980,966		460,346				
Bac	k	[•						Continue)			

U.S.Amm

Cluster Results Cold Climate

Study Study Facility List Information Loads				Decision Analysis	Generate Reports				C	ase, M	
Detail	s Cluster & M	letworks	Eq	uipment & M	leasures	Constrai	nts Optimiz	ation	Results		
nstal	llation Resu	lts - Equi	ipm	ent Overv	view						
 Inst 	tructions										
< Rep	oorts			Alternative	T De	vices T					
Rep	Annual Energy C	omparison	÷	Baseline	21						
Reports	Energy Overview		+	Basecase	19						
° (Equipment Overv	view	+	Building EEMs	s 19						
			+	District Stean	n 20						
			-	District Hot Water							
				Cluster		T Devices T	7				
				Current Ste	am Netwo	rk 23					
				Туре 🏹	Equipme	nt T	Max Power T	Unit	Devices T		
				Input\Output	ACBus1		20,000	kW ▼	2		
				Input\Output	DistElec_	Chills	999,999	kW ▼	1		
				Input\Output	ExistingD	ieselGen	2,000	kW ▼	2		
				Input\Output	ExistingD	uctBoiler	18,200	kW ▼	1		
Natural Gas		20		Input\Output	ExistingN	ebraskaBoiler	25,500	kW ▼	1		
				Input\Output Existing		GT	5,700	kW ▼	1		
Recip	ecipe En	ipe Engine		Input\Output	HEx300_	325F80PSI	10,000	kW ▼	6		
CH	۱P .	•		Input\Output	HEx350_	375F120PSI	10,000	kW ▼	6		
01				Storage	LTHotWa	terNetwork	900,000	kW ▼	1		
			- (Input\Output	NGR Cat	ornillar CHD	3,300	kW 🔻	2		

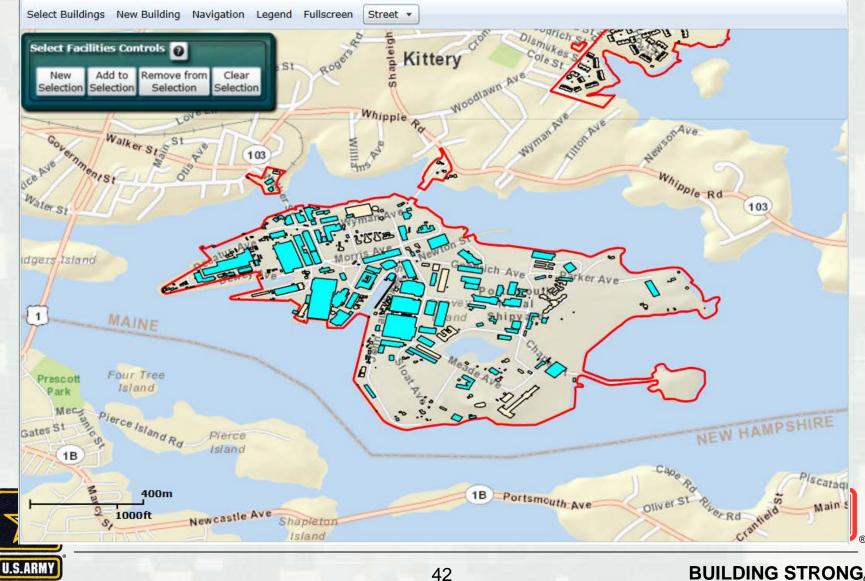
BUILDING STRONG®

U.S.ARM

Cluster Results - Warm Climate

chult	chudu	Constitutes	Turstelletien en	Desision	Commente					
Study	Study Information	Facility Loads	Installation or Subsection	Decision Analysis	Generate Reports				Case, Mike 🖉	>
Det	ails Cluster &	Networks	Equipment & I	Measures	Constrain	ts Optimiz	ation	Results	ک ۲	
Inst	allation Resu	ilts - Equi	ipment Overv	view					мепи	
	nstructions Reports					_			~	
	Annual Energy C	Comparison	Alternative		T Devices	Т. <u>Т</u>				
Reports	Energy Overview		Baseline		13					
¢.	Equipment Over	·····/	Basecase		13					
)	Better Case Best Case		13 13					
500				50% Penewak						
<u>50%</u>	<u>% Net Ze</u>	ero	Best Case W	5576 Reliewal	10					
			Cluster	T Devices	T					
			De-Central	ized 18						
			Туре Т	Equipment	T	Max Power	Unit	Devices T		
			Input\Output			20,000	kw 🔻			
				DistBoilersS	olution	9,999,999	kW -			
			Input\Output	DistElec_Chi	lls	9,999,999	kw 🔻	1		
			Input\Output	t ExistingPhot	oVolt100kW	100,000	kW 🔻	7		
			Input\Output	ExistingPhot	oVolt10kW	10,000	kW 🔻	3		
			Input\Output	PhotoVolt10	00kW	1,000,000	kW 🔻	5		
	Net Ze	oro	🗉 Best Case Ne	t Zero	52					
		<u>510</u>	Cluster	T Devices	T					
			🗉 De-Centrali	zed 52						
FI	ow Batte	erv	Туре Т	Equipment	T	Max Power ा	Unit	Devices T		
			Input\Output			20,000		1		
pensive	electrici	ty)	Input\Output	BiomassCHP		1,000	kW 👻	1		
			Input\Output	DistBoilersSo	olution	9,999,999	kW 🔻	1		
				DistElec_Chil		9,999,999	kW 🔻			
				ExistingPhoto			kW ▼	1		
57				EvictingPhoto		100,000	kW ▼	1		
			Storage	FlowBatteryZ		400.00	kW ▼ KW ▼			
			-	PhotoVolt100		100,000	kw ▼			
U.S.ARMY			Input\Output			100,000	kW -		.DI	NI/

DECISION ANALYSIS FOR PORTSMOUTH NAVAL SHIPYARD (PNSY)


BUILDING STRONG®

PNSY Aerial View

Building Representation in NZP

BUILDING STRONG

Description of Alternative Scenarios

1. Baseline:

Existing buildings and central plant equipment is simulated.

2. Basecase:

buildings with planned construction, renovation, and demolition. Existing central plant equipment provides a "status quo" used as a comparison for the remaining scenarios.

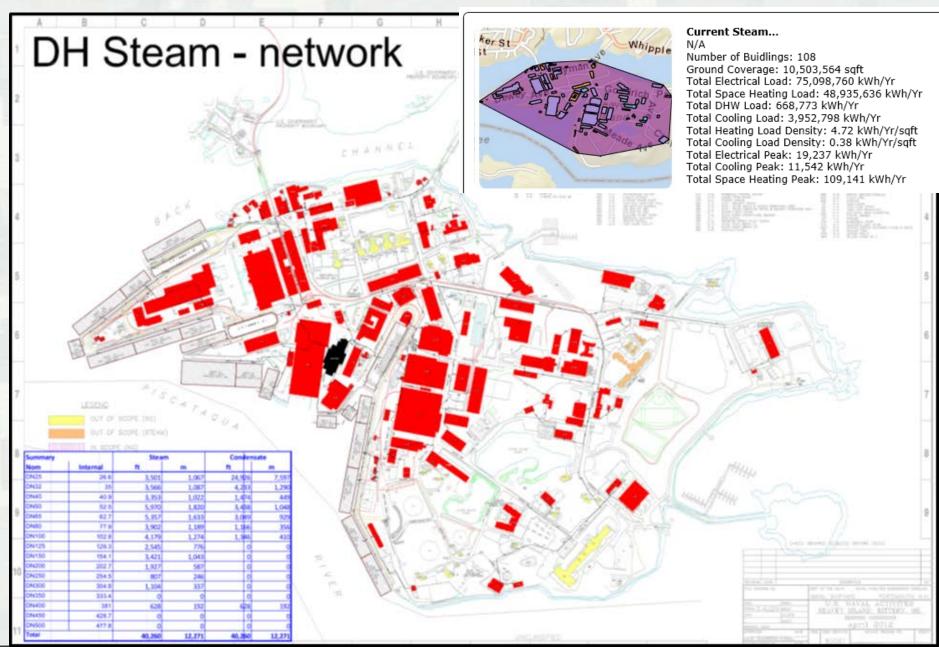
3. District Steam:

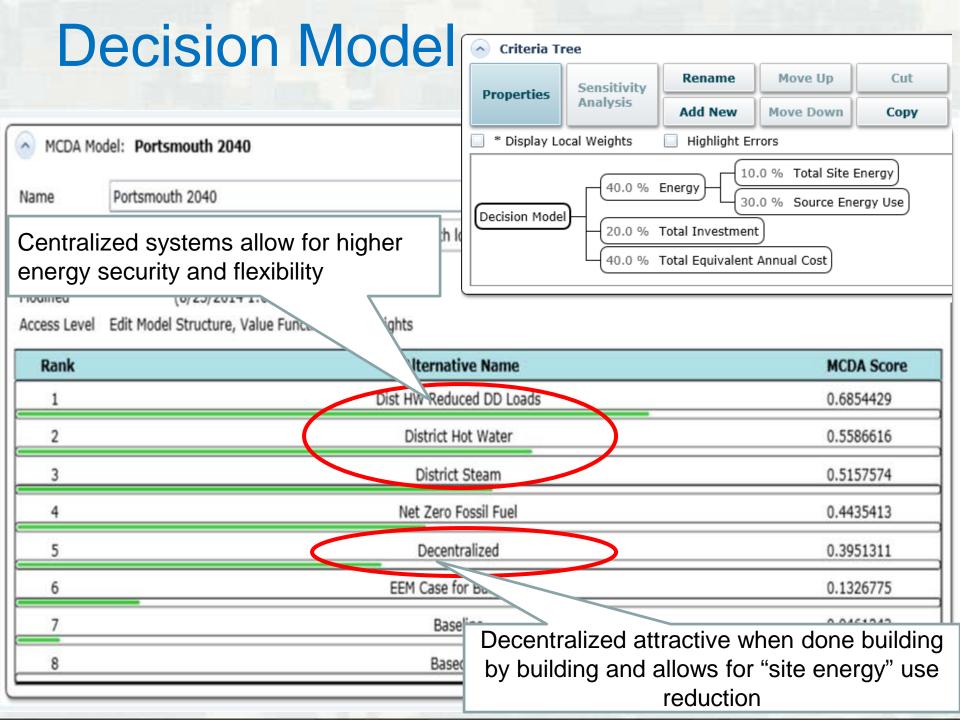
buildings with a modern steam system. One existing natural gas turbine is replaced with two natural gas reciprocating engines with approximately half the electrical output capacity each.

4. District hot water and spot steam (District Hot Water):

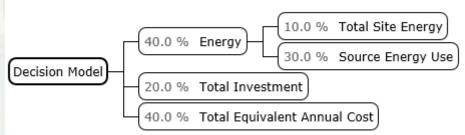
 buildings with a modern hot water system and spot steam generation to meet process loads. Central plant same as District Steam scenario.

5. Decentralized:


 buildings with decentralized boilers/furnaces and spot steam generation to meet process load. The same level of electrical backup is still required (15.4 MW for the installation, as in the existing central plant).

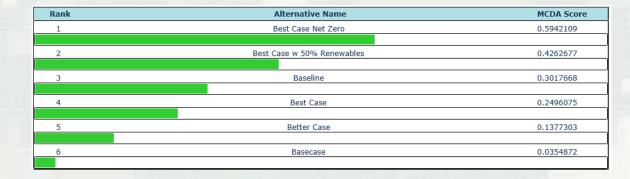

6. Net-Zero Fossil Fuel (Net-Zero FF):

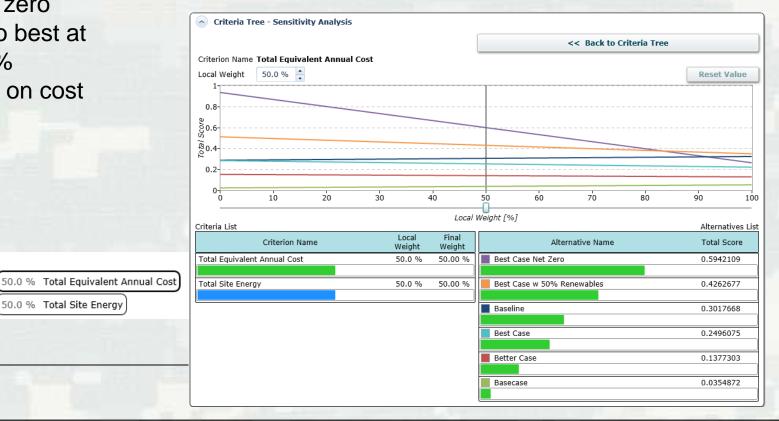
buildings with a modern hot water system and lowest equivalent annual cost equipment to meet net zero fossil fuel goals. Only analyzed using the NZP tool.


District System Network: Sizing and Routing

Multi-Criteria Decision Analysis Cool Weather Example

- Uses quantitative data from NZP models
- Qualitative data can be used (e.g. stakeholder opinions)
- Sensitivity analysis can be conducted on importance of different metrics.




BUILDING STRONG®

Multi-Criteria Decision Analysis Warm Weather Example

- Net zero best • choice based on equal weighting between energy and cost
- 50% new zero • crosses to best at about 91% weighting on cost

50.0 % Total Site Energy

Net Zero Decision Model

NZP Tool Conclusions

- Do not make short term decisions without a long term plan
- Simple Interface to POWERFUL underlying tools, i.e. EnergyPlus, AMPL, CPLEX, etc.
- NZP Tool analysis currently available through U.S. Army Corps of Engineers
- NZP Tool already follows the OSD Installation Energy Plans Memo

YouTube Live Demo

https://www.youtube.com/channel/UC2sdFPLVc5TENXyuRL4SzNw

BUILDING STRONG®

Conclusions

- Do not make short term decisions without a long term plan
- NZP Tool makes the data collection for energy and cost analysis faster and easier
- Simple Interface to POWERFUL underlying tools, i.e. EnergyPlus, AMPL, CPLEX, etc.

